UMD Physicist Improves Method for Designing Experimental Fusion Reactors

UMD Physicist Improves Method for Designing Experimental Fusion Reactors

Development of nuclear fusion—the process that powers stars—into a viable source for energy on Earth remains far in the future. However, a new software advance created by University of Maryland physicist Matt Landreman could help speed the process a bit by bringing down the cost and time needed to build stellarators, one of the two types of complex nuclear fusion reactors used to explore fusion’s potential as an energy source.

Stellarators work by generating a ring of blazing-hot plasma inside a precisely shaped magnetic field generated by a complex arrangement of external electromagnetic coils. Landreman's new method is better at balancing tradeoffs between the ideal magnetic field shape and potential coil shapes, resulting in designs with more space between the coils. This extra space allows better access for repairs and more places to install sensors.

Inside a fusion reactor, when the plasma gets to several million degrees—as hot as the interior of the sun—atomic nuclei begin to fuse together, releasing massive amounts of energy. Modern computer-aided designs for the complex configuration required for stellarators has boosted interest in these reactors—the first of which were designed and built in the 1950s—versus the competing fusion reactor design known as the tokamak.

To build a rare and expensive stellarator reactor, engineers first use a series of algorithms to create exacting plans for the design of the elaborate ring of electromagnetic coils. The wide variety of possible coil shapes that can generate identical magnetic fields, adds levels of complexity to this design process. Landreman is one of the few researchers who have studied how to choose the best among all potential coil shapes for a specific stellarator.

Through this work, he has made an important revision to one of the most common software tools used to design stellarators. Landreman’s new method is described in a paper published February 13, 2017 in the journal Nuclear Fusion.

“Instead of optimizing only the magnetic field shape, this new method considers the complexity of the coil shapes simultaneously. So there is a bit of a tradeoff,” said Landreman, an assistant research scientist at the UMD Institute for Research in Electronics and Applied Physics (IREAP) and sole author of the research paper. “It’s a bit like buying a car. You might want the cheapest car, but you also want the safest car. Both features can be at odds with each other, so you have to find a way to meet in the middle.”

Researchers used the previous method, called the Neumann Solver for Fields Produced by External Coils (NESCOIL) and first described in 1987, to design many of the stellarators in operation today—including the Wendelstein 7-X (W7-X). The largest stellarator in existence, W7-X began operation in 2015 at the Max Planck Institute of Plasma Physics in Germany.

“Most designs, including W7-X, started with a specifically shaped magnetic field to confine the plasma well. Then the designers shaped the coils to create this magnetic field,” Landreman explained. “But this method typically required a lot of trial-and-error with the coil design tools to avoid coils coming too close together, making them infeasible to build, or leaving too little space to access the plasma chamber for maintenance.”

Landreman’s new method, which he calls Regularized NESCOIL—or REGCOIL for short—gets around this by tackling the coil spacing issue of stellarator design in tandem with the shaping of the magnetic field itself. The result, Landreman said, is a fast, more robust process that yields better coil shapes on the first try.

“In mathematics, we’d call stellarator coil design an ‘ill-posed problem,’ meaning there are a lot of potential solutions. Finding the best solution is highly dependent on posing the problem in the right way,” Landreman said. “REGCOIL does exactly that by simplifying coil shapes in a way that the problem can be solved very efficiently.”

Modeling tests performed by Landreman suggest that the designs produced by REGCOIL confine hot plasma in a desirable shape, while significantly increasing the minimum distances between coils.

“This field is still in the basic research stage, and every new design is totally unique,” Landreman said. “With these incompatible features to balance, there will always be different points where you can decide to strike a compromise. The REGCOIL method allows engineers to examine and model many different points along this spectrum.”

The research paper, “An improved current potential method for fast computation of stellarator coil shapes,” Matt Landreman, was published February 13, 2017 in the journal Nuclear Fusion. 

This work was supported by the United States Department of Energy (Award Nos. DE-FG02-93ER54197 and DE-AC02-05CH11231). The content of this article does not necessarily reflect the views of this organization.


 Photo caption: The solid lines are shapes made by the old software, while the dotted lines are shapes made by the new software. Matt Landreman/University of Maryland physicist.

February 15, 2017


Prev  Next

Connect

Twitter     LinkedIn     RSS Feed

    Division of Research
    University of Maryland
    College Park, MD 20742-1541

    Email: vpr@.umd.edu

        

    Did You Know

    Turtle Image

    UMD is the only major public research university inside the Washington, DC beltway!!